$p22^{phox}$ protects the heart against pressure overload

Yasuki Nakada, Wataru Mizushima, Yanfei Yang, Peiyong Zhai, Shinichi Oka, Nadezhda Fefelova, Lai-Hua Xie, Tong Liu, Hong Li, Junichi Sadoshima

Introduction: $p22^{phox}$ forms a complex with NADPH oxidases, major sources of O₂⁻ and H₂O₂. However, the role of $p22^{phox}$ during stress remains to be elucidated.

Purpose: To investigate the role of endogenous $p22^{phox}$ during pressure overload (PO).

Methods and results: The level of $p22^{phox}$ protein in isolated cardiomyocytes after 4 weeks of transverse aortic constriction (TAC) was significantly higher than after sham operation (1.7-fold, p<0.05). The cardiac phenotype of cardiac-specific $p22^{phox}$ knockout (p22^{phox}cKO) mice was normal at baseline. However, four weeks after TAC, $p22^{phox}$ cKO mice exhibited a lower left ventricular ejection fraction (32.0±10.0 vs 53.2 \pm 8.4%, p<0.05), a higher lung weight to tibial length ratio (23.0 \pm 6.0 vs 13.1 \pm 6.6, p < 0.05), and more interstitial fibrosis (6.1 \pm 1.0 vs 4.4 \pm 1.1%, p < 0.05) than control mice, indicating that the loss of $p22^{phox}$ exacerbates TAC-induced cardiac dysfunction. The level of oxidative stress in the heart, evaluated by dityrosine immunoblot, was significantly lower in $p22^{phox}$ cKO mice than in control mice (0.71±0.04 vs 1.00±0.04, p<0.01). The peak Ca²⁺ amplitude in isolated cardiomyocytes was lower in $p22^{phox}$ cKO mice than in control mice at baseline $(2.4\pm0.1 \text{ vs } 3.0\pm0.2, p<0.01)$. Although mRNA expression of SERCA2a did not differ, there was significantly less SERCA2a protein in $p22^{phox}$ cKO mice than in control mice (0.62±0.10 vs 1.00±0.23, p<0.01) at baseline. The amount of biotinylated iodoacetamide labeled SERCA2a was significantly smaller in *p22^{phox}*cKO hearts than in control mouse hearts (0.4-fold, p<0.01), indicating that cysteine residues in SERCA2a are oxidized to a greater extent in $p22^{phox}$ cKO hearts than in control mouse hearts. Since cysteine oxidation decreases the stability of SERCA2a, our results suggest that $p22^{phox}$ stabilizes SERCA2a by preventing cysteine oxidation.

Conclusion: Endogenous $p22^{phox}$ is protective against PO, possibly by maintaining SERCA2a stability.